تیتر امروز

مهدی پازوکی: با وجود پژوهشکده شورای نگهبان، سازمان برنامه را تعطیل کنید!/ ما انقلاب کردیم عقلانیت حاکم شود نه رانت خواری/ تندرو‌ها بحران می‌سازند، بحران را مدیریت می‌کنند/ شریعتمداری در ویلا دماوند می‌نشیند، مردم هزینه‌اش را می‌دهند
گفت‌وگوی دیدار در سومین ویژه برنامه «میدان پاستور» با یک اقتصاددان

مهدی پازوکی: با وجود پژوهشکده شورای نگهبان، سازمان برنامه را تعطیل کنید!/ ما انقلاب کردیم عقلانیت حاکم شود نه رانت خواری/ تندرو‌ها بحران می‌سازند، بحران را مدیریت می‌کنند/ شریعتمداری در ویلا دماوند می‌نشیند، مردم هزینه‌اش را می‌دهند

در سومین برنامه از سری برنامه «میدان پاستور» مهدی پازوکی اقتصاددان و استاد دانشگاه مهمان ما بود. او معتقد است: متخصصان و صاحب نظران هر حرفی می‌زنند تندرو‌ها واکنش نشان می‌دهند، به دلیل اینکه...
افزایش سهم مالیات؛ اصلاح ساختار یا فشار بیشتر بر مردم؟/ خصوصی‌سازی یک رویا بود/ فیلم ۱۰۰ میلیاردی، کارت زرد به وزیر!
مجله اقتصادی دیدارنیوز با اجرای لیلا قصاب‌زاده

افزایش سهم مالیات؛ اصلاح ساختار یا فشار بیشتر بر مردم؟/ خصوصی‌سازی یک رویا بود/ فیلم ۱۰۰ میلیاردی، کارت زرد به وزیر!

این بیست و یکمین برنامه مجله اقتصادی دیدارنیوز است که با اجرای لیلا قصاب‌زاده به بررسی آخرین اخبار اقتصادی ایران و جهان در هفته گذشته می‌پردازد و با حضور کارشناسان و صاحب نظران تقدیم شما مخاطبان...
ترامپ: لازم باشد باز هم به ایران حمله می‌کنیم/ آمادگی اسرائیل و ایران برای دور تازه جنگ؟/ عراقچی: تا جبران خسارت نشود، مذاکره بی‌مذاکره
مجله خبری تحلیلی دیدارنیوز با اجرای محمدرضا حیاتی

ترامپ: لازم باشد باز هم به ایران حمله می‌کنیم/ آمادگی اسرائیل و ایران برای دور تازه جنگ؟/ عراقچی: تا جبران خسارت نشود، مذاکره بی‌مذاکره

این صد و سیزدهمین برنامه مجله خبری تحلیلی دیدارنیوز است که با اجرای محمدرضا حیاتی و با حضور کارشناسان و صاحب نظران تقدیم مخاطبان گرامی می‌شود.

حل یک میلیون بار سریع‌تر یک مسئله پیچیده ریاضی

یک پیشرفت کامپیوتری به حل یک مسئله پیچیده ریاضی با سرعت یک میلیون بار بیشتر کمک می‌کند و می‌تواند پیش بینی‌های آب و هوایی را دقیق‌تر کند.

کد خبر: ۱۰۹۸۰۹
۱۸:۲۹ - ۰۴ مهر ۱۴۰۰

حل مسئله پیچیده ریاضی

دیدارنیوز ـ به نقل از آی‌ای، یک الگوریتم یادگیری ماشین که عملکرد مغز انسان را تقلید می‌کند موسوم به " رایانش مخزنی" (Reservoir computing)، انقلابی در چگونگی مقابله دانشمندان با پیچیده‌ترین چالش‌های پردازش داده ایجاد کرده است و اکنون محققان تکنیک جدیدی را کشف کرده‌اند که می‌تواند آن را در کار‌های خاص، در حالی که از منابع محاسباتی بسیار کمتری با ورودی داده‌های کمتر استفاده می‌کند، تا یک میلیون بار سریع‌تر کند.

محققان با این تکنیک نسل جدید توانستند یک مسئله محاسباتی پیچیده را در کمتر از یک ثانیه با یک رایانه خانگی حل کنند. این مسائلِ بیش از حد پیچیده مانند پیش‌بینی آب و هوا که همواره در طول زمان تغییر می‌کنند، دلیل پیدایش و توسعه "رایانش مخزنی" در اوایل دهه ۲۰۰۰ است.

پیش‌بینی این سیستم‌ها بسیار دشوار است که "اثر پروانه‌ای" یک نمونه مشهور از آن‌ها است. این مفهوم که با کار "ادوارد لورنز" ریاضیدان و هواشناس در ارتباط است، اساساً توضیح می‌دهد که چگونه یک پروانه با تکان دادن بال‌هایش می‌تواند هفته‌ها بعد بر آب و هوا تأثیر بگذارد.

حل یک مساله ریاضی پس از ۱۵۶ سال

"رایانش مخزنی" برای یادگیری چنین سیستم‌های پویایی مناسب است و می‌تواند پیش‌بینی‌های دقیقی از نحوه رفتار آن‌ها در آینده ارائه دهد. با این حال، هرچه یک سیستم بزرگ‌تر و پیچیده‌تر باشد، منابع محاسباتی بیشتر و شبکه‌ای از نورون‌های مصنوعی و زمان بیشتری برای به دست آوردن پیش‌بینی‌های دقیق مورد نیاز است.

با این حال، محققان فقط نحوه کار "رایانش مخزنی" را می‌دانند، نه آنچه درون آن می‌گذرد. شبکه‌های عصبی مصنوعی در رایانش مخزنی بر پایه ریاضیات ساخته شده‌اند و به نظر می‌رسد که تمام کاری که این سیستم برای کارآمدتر شدن نیاز داشته، ساده‌سازی آن بوده است. چرا که گروهی از محققان به سرپرستی "دنیل گوتیه" استاد فیزیک دانشگاه ایالتی اوهایو توانستند این کار را انجام دهند و به طور چشمگیری نیاز به منابع محاسباتی را کاهش داده و در زمان به میزان قابل‌توجهی صرفه‌جویی کنند.

طبق مطالعه منتشر شده در مجله Nature Communications، هنگامی که این مفهوم در یک کار برای پیش‌بینی مورد آزمایش قرار گرفت، مشخص شد که این تکنیک رایانش مخزنی نسل جدید به وضوح از دیگر تکنیک‌ها برتر است.

این روش جدید، یک میلیون برابر سریع‌تر عمل کرد. این افزایش سرعت با این واقعیت امکان‌پذیر شد که نسل جدید رایانش مخزنی نسبت به نسل‌های قبلی نیاز به تعلل و آموزش کمتری دارد.

"گوتیه" توضیح داد: برای این نسل جدید رایانش مخزنی، تقریباً هیچ زمانی برای گرم شدن و آمادگی سیستم لازم نیست. تاکنون دانشمندان باید ۱۰۰۰ یا ۱۰ هزار نقطه داده یا بیشتر را برای آمادگی آن قرار می‌دادند، در حالی که اکنون ورود تنها یک یا دو یا سه نقطه داده کافی است.

علاوه بر این، این تکنیک جدید توانست با ۲۸ نورون به دقت کافی برسد، در حالی که سیستم‌های کنونی به ۴۰۰۰ نورون نیاز دارند.

"گوتیه" اظهار داشت: چیزی که هیجان انگیز است این است که نسل جدید رایانش مخزنی، آنچه را که قبلاً نیز بسیار خوب بود، به طور قابل توجهی کارآمدتر می‌کند.

به نظر می‌رسد که این تازه آغاز ماجرا است. محققان قصد دارند شبکه عصبی فوق کارآمدتری را در آینده در برابر کار‌های دشوارتر آزمایش کنند و این را حتی در مسائل پیچیده رایانه‌ای مانند پیش‌بینی دینامیک سیالات گسترش دهند.

منبع: ایسنا
برچسب ها: علم و فناوری
ارسال نظرات
امروز شنبه ۱۱ مرداد
امروز شنبه ۱۱ مرداد
امروز شنبه ۱۱ مرداد
امروز شنبه ۱۱ مرداد